
EE 435

Lecture 27

Data Converter Characterization

• Linearity Metrics

• Spectral Characterization



INL-based ENOB
Consider initially the continuous INL definition for an ADC where the INL of an 

ideal ADC is XLSB/2

Assume

Define the effective LSB by

EQ

 REF
 LSBEFF n

=
2

X
X

Thus
EQn

LSBEFFINL=θ2 X

Since an ideal ADC has an INL of XLSB/2, express INL in terms of ideal ADC

1)

2
EQ(n LSBEFFX

INL= θ2
+   

    
Setting term in [ ] to 1, can solve for nEQ to obtain

( )EQ 2 R 2
1

ENOB = n  = log n -1-log
2θ


 

= 
 

REF LSBRINL= θX  = X

where XLSBR is the LSB based upon the defined resolution

where nR is the defined resolution

Review From Last Lecture



INL-based ENOB
( )R 2ENOB = n -1-log 

ENOB

½ n

1 n-1

2 n-2

4 n-3

8 n-4

16 n-5

Consider an ADC with specified resolution of nR and INL of ν LSB



Review From Last Lecture



Differential Nonlinearity (DAC)
Nonideal DAC

INXC0 C1 C2 C3 C4 C5 C6 C7

XREF

XOUT(k)-XOUT(k-1)

XOUT

Increment at code 4

( )
( ) ( )OUT OUT LSB

LSB

X k -X k-1 -X
DNL k =

X

Increment at code k is a signed quantity and will be negative if XOUT(k)<XOUT(k-1)

( ) 
1 k N-1

DNL= DNL kmax
 

DNL=0 for an ideal DAC

Review From Last Lecture



Differential Nonlinearity (ADC)
Nonideal ADC

( )
 T(k+1)  Tk  LSB

LSB

- -
DNL k =

X X X

X 

DNL(k) is the code width for code k – ideal code width normalized to XLSB
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for code C3 



Differential Nonlinearity (ADC)
Nonideal ADC

( )
 T(k+1)  Tk  LSB

LSB

- -
DNL k =

X X X

X 

XIN
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XT5

XT6

XT7

Code width 

for code C3 

( ) 
2 k N-1

DNL= DNL kmax
 

DNL=0 for an ideal ADC

Note:  In some nonideal ADCs, two or more break points could cause transitions 

to the same code Ck making the definition of DNL ambiguous



Monotonicity in an ADC
Nonideal ADCs

XIN

OUTX

XREF

C0

C1
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XT1 XT2 XT3 XT4

XT5

XT6

XT7

Monotone ADC Nonmonotone ADC

Definition:   An ADC is monotone if the 

Note:  Some authors do not define monotonicity in an ADC. 

XIN

OUTX

XREF

C0

C1
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C4

C5

C6

C7

XB1 XB2 XB3 XB4 XB5 XB6

XB7

OUT  k OUT  m  k  mX ( ) X ( ) whenever X X X X

Note:  Have used XBk instead of XTk since more than one transition point to a given 

code



Missing Codes (ADC)
Nonideal ADCs

XIN
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XREF
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No missing codes One missing code

Definition:   An ADC has no missing codes if there are N-1 transition points and a 

single LSB code increment occurs at each transition point. If these criteria are not

satisfied, we say the ADC has missing code(s).

Note:  Some authors claim that missing codes in an ADC are the counterpart 

to nonmonotonicity in a DAC.  This association is questionable. 

Note:  With this definition, all codes can be present but we still say it has 

“missing codes”



Missing Codes (ADC)
Nonideal ADCs

Missing codes Missing code with all codes present
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Weird Things Can Happen

Nonideal ADCs

XIN

OUTX
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C0
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XB1 XB2
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XT7

• Multiple outputs for given inputs

• All codes present but missing codes

Be careful on definition and measurement  of linearity parameters to avoid 

having weird behavior convolute analysis, simulation or measurements

Most authors (including manufacturers) are sloppy with their definitions of data 

converter performance parameters and are not robust to some weird operation



Linearity Measurements (testing)

VIN(t) DUT

VREF

XIOUT

Consider ADC

Linearity testing often based upon code density testing

Code density testing:

VREF

t

VIN(t)

VREF

t

VIN(t)

Ramp or multiple ramps often used for excitation

Linearity of test signal is critical (typically 3 or 4 bits more linear than DUT)



Linearity Measurements (testing)

VIN(t) DUT

VREF

XIOUT

Code density testing:

VREF

t

VIN(t)

C0
CN-1

ˆ
OUTX ,  C

• First and last bins generally have many extra counts (and thus no useful information)

• Typically average 16 or 32 hits per code

i C :number of counts in bin “i”



Linearity Measurements (testing)

Code density testing:

C0
CN-1

ˆ
OUTX ,  C

N-2

i
i=1

C

C =
N-2



i
i

C -C
DNL =

C

ˆ

1

i

i k
k=1

0 i=0,N-2

INL = C -iC

N-3
C

i



 
 
   



 
1 i N-2

DNL = max iDNL
 

 
1 i N-3

INL = max iINL
 

▪ This measurement is widely used

▪ Does not keep track of order bins are filled

▪ Some weird things can occasionally happen 

with this approach



Linearity Measurements (testing)

Code density testing:

C0
CN-1

ˆ
OUTX ,  C

 
1 i N-2

DNL = max iDNL
 

 
1 i N-3

INL = max iINL
 

Though INL and DNL for an ADC are rigorously defined, measuring the 

actual transition points is not practical even if n is small so code density 

tests are almost always used to “test” the INL and the DNL 



Performance Characterization of Data Converters

• Static characteristics
– Resolution

– Least Significant Bit (LSB)

– Offset and Gain Errors

– Absolute Accuracy

– Relative Accuracy

– Integral Nonlinearity (INL)

– Differential Nonlinearity (DNL)

– Monotonicity (DAC)

– Missing Codes (ADC)

– Low-f Spurious Free Dynamic Range (SFDR)

– Low-f Total Harmonic Distortion (THD)

– Effective Number of Bits (ENOB)

– Power Dissipation



Linearity

A data converter (ADC or DAC) can be viewed as an amplifier that interfaces 

between the analog and digital domains

Linearity is of considerable concern in amplifiers irrespective of whether the 

I/O is analog:analog,  analog:digital, digital:analog, or digital:digital

Though INL and DNL give some information about linearity (the term “linearity” 

is even included in their names!), much information about the actual linearity of 

a data converter is suppressed in the INL and DNL metrics

The seemingly simple concept of linearity is challenging to accurately 

characterize



Performance Characterization of Data Converters

• Static characteristics
– Resolution

– Least Significant Bit (LSB)

– Offset and Gain Errors

– Absolute Accuracy

– Relative Accuracy

– Integral Nonlinearity (INL)

– Differential Nonlinearity (DNL)

– Monotonicity (DAC)

– Missing Codes (ADC)

– Low-f Spurious Free Dynamic Range (SFDR)

– Low-f Total Harmonic Distortion (THD)

– Effective Number of Bits (ENOB)

– Power Dissipation

Linearity 

Metrics

Spectral 

Characterization



Spectral Characterization



INL Often Not a Good Measure of Linearity
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XREF

XREF

XIN
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XIN
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XREF

Four identical INL with dramatically different linearity



Linearity Issues

• INL is often not adequate for predicting the 

linearity performance of a data converter

• Distortion (or lack thereof) is of major 

concern in many applications

• Distortion is generally characterized in 

terms of the harmonics that may appear in 

a waveform when a periodic excitation is 

applied at the input



Two Popular Methods of Linearity 

Characterization

• Integral and Differential Nonlinearity (metrics:  INL, DNL)

• Spectral Characterization (Based upon spectral harmonics of 

sinusoidal signals   metrics: THD, SFDR, SDR SNR)

XIN

XOUT

XREF

XREF

k

kA

1 2 3 4 5 6



Spectral Analysis

T

T

2π
ω =

( )0 k k

k 1

x(t) A A sin kωt θ


=

= + +
alternately

( ) ( )0 k k

k 1 k 1

x(t) A a sin kωt b cos kωt
 

= =

= + + 
2

k

2

kk baA +=

If x(t) is periodic

Termed the Fourier Series Representation of x(t)

Metrics based upon Fourier Series Coefficients Useful for Characterizing how 

nonlinear a system is !  



Fourier Series Representation of Periodic 

Continuous-Time Signals

( ) ( )
1 1

1 1

t T t T

jkω t jkω t

k

t t

1
A x t e dt x t e dt

ωT

+ +

−
 
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 
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2
a x t sin ktω dt
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+

=  ( ) ( )
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k

t

2
b x t cos ktω dt

ωT

+

= 

or

Integral is very time consuming, particularly if large number of components are required

( )0 k k

k=1

x(t)=A + A sin kωt+θ



Fourier Series Coefficients Determined From:



Spectral Analysis

Nonlinear

System (weakly)

XIN(t) XOUT(t)

Often the system of interest is ideally linear but practically it is weakly 

nonlinear.  

Often the input is nearly periodic and often sinusoidal and in latter case 

desired output is also sinusoidal

Weak nonlinearity will cause harmonic distortion (often just termed 

distortion)  of signal as it is propagated through the system

Spectral analysis often used to characterize effects of the weak 

nonlinearity

Spectral Performance Dependent upon Magnitude and Offset of Input 



Spectral Analysis

Nonlinear

System (weakly)

XIN(t) XOUT(t)

Distortion Types:  

Frequency Distortion

Nonlinear Distortion (alt. harmonic distortion)

Frequency Distortion:  Amplitude and phase of system is altered but 

output is linearly related to input (i.e. system remains linear)

Nonlinear  Distortion:  Characteristic of System that is not linear, frequency 

components usually appear in the output that are not present in the input

Spectral Analysis is the characterization of a system with a periodic input that 

relates  the Fourier series relationships between the input and output waveforms

“Distortion” refers to two entirely different phenomenon



Spectral Analysis

Nonlinear

System

XIN(t) XOUT(t)

If ( ) ( )θωtsinXtX mIN +=

All spectral performance metrics depend upon the sequences 

Spectral performance metrics of interest:    SNDR, SDR, THD, SFDR, IMOD

0k k
A



= 1k k




=

( ) ( ) ( )0

1 1

sin cosOUT k k
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X t A a k t b k t 
 
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Alternately
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k

k

b

a
 −  

=  
 



FS, FT, DTFS,DTFT



DFT,DFS,FFT,IDFT



FS, FT, DTFS,DTFT

DFT, DFS, FFT, IDFT

The “Fourier” Representations:

Really fundamental concepts but varying notation and maybe 

varying perceptions

“applies”

“computed for”

“perform” “computes”“algorithm”

“converts”



Spectral Characterization
Assume x(t) is periodic with period T (T=1/f) and  band-limited

( ) ( )
1

sin
=

= +
M

k k

i

x t A k t 

1 2, ,,,, NX X X X= frequency domain

time domain

DFT

IDFT

2M parameters

2N parameters

(Xk are complex)

(Ak ,θk)

x(t)=IDFT (DFT(x(t)))

( ) ( ) ( ), 2 ,....= S S Sx x T x T x NT

NTs=Tx(t) is uniformly sampled N times  with sampling interval TS

• Sampling interval not restricted to a single period

• Under certain conditions, x(t) is uniquely represented by ( )X k



Spectral Characterization

Will focus on how Fourier Series Representation of a periodic signal is altered  

when it passes through a weakly  nonlinear system  

Relationship between DFT and continuous-time Fourier Series representation 

is fundamental to characterizing spectral performance of a weakly nonlinear 

system  



Distortion Analysis



= 0kkA

A1 is termed the fundamental

Ak is termed the kth harmonic

k

kA

1 2 3 4 5 6

• Often termed the DFT coefficients (will show later)

• Spectral lines, not a continuous function



Distortion Analysis



= 0kkA

k

kA

1 2 3 4 5 6

Often ideal response will have only fundamental present and all 

remaining spectral terms will vanish



Distortion Analysis



= 0kkA

k

kA

1 2 3 4 5 6

For a low distortion signal, the 2nd and higher harmonics are generally 

much smaller than the fundamental

The magnitude of the harmonics generally decrease rapidly with k for low 

distortion signals



Distortion Analysis

k

kA

1 2 3 4 5 6

x(t) is band-limited to frequency 2π f kX if  AkX≠0 and Ak=0 for all k>kx

Assume x(t) is periodic with period 1
T

f
=

where                 are the Fourier series coefficients of f(t)
0k k

A


=



Distortion Analysis

Total Harmonic Distortion, THD

lfundamentaofvoltageRMS

harmonicsinvoltageRMS
THD =

2

A

...
2

A

2

A

2
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






+
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
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
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A
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
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Distortion Analysis

Spurious Free Dynamic Range, SFDR

The SFDR is the difference between the fundamental and the largest harmonic

SFDR is usually determined by either the second or third harmonic

k

kA

1 2 3 4 5 6

SFDR



Distortion Analysis
In a fully differential symmetric circuit, all even harmonics are 

absent in the differential output !

k

kA

1 2 3 4 5 6



Distortion Analysis
Theorem: In a fully differential symmetric circuit, all even-order terms 

are absent in the Taylor’s series output for symmetric differential 

excitations !

Proof: Expanding in a Taylor’s series around VID=0, we obtain

VID VOD

+

-

+

-

VO1

VO2

( ) ( )

( ) ( )

( ) ( ) ( )1

k k

OD 01 02 k ID k ID

k 0 k 0

k k

OD k ID ID

k 0

k k

OD k ID ID

k 0

V =V V h V h -V

V = h V -V

V = h V V

 

= =



=



=

− = −

 −
 

 − −
 

 




k

When k is even, term in [  ] vanishes

( ) ( )

( ) ( )

k

01 ID k ID

k 0

k

02 ID k ID

k 0

V V h V

V x -V h -V



=



=

= =

= =





x



Distortion Analysis
Theorem: In a fully differential symmetric circuit, all even harmonics are 

absent in the differential output for symmetric differential excitations !

Proof:

VID VOD

+

-

+

-

VO1

VO2

Recall:

( )

( )( )

( )( )

1

2

0

2

2

0

sin 2

sin

sin 2

n

k

k

n

n

k k

k

h n k x for nodd

x

g n k x for neven

−

=

−

=


 −



= 



− +






where hk, gk, and θk are constants

That is, odd powers of sinn(x) have only  odd harmonics present 

and even powers have only even harmonics present



Stay Safe and Stay Healthy !



End of Lecture 27


