EE 435

Lecture 27

Data Converter Characterization

* Linearity Metrics
« Spectral Characterization



Review From Last Lecture

INL-based ENOB

Consider initially the continuous INL definition for an ADC where the INL of an
ideal ADC is X gg/2

Assume INL= OXReF = 0X_ sBR
where X ggris the LSB based upon the defined resolution

Define the effective LSB by

_XREF
X | SBEFF=

2NEq

Thus n
INL=02"5X| sBEFF

Since an ideal ADC has an INL of X, sg/2, express INL in terms of ideal ADC

INL=[62(”EQ+1) }( XLSI;EFF )

Setting term in [ ] to 1, can solve for ng to obtain

ENOB = ngq = logs (2_19j =nRr-1-logy (v)
where ng is the defined resolution



Review From Last Lecture

INL-based ENOB
ENOB = ng-1-logs (v)

Consider an ADC with specified resolution of ng and INL of v LSB

v ENOB
Y2 n

1 n-1

2 n-2
4 n-3
8 n-4
16 n-5




Review From Last Lecture

Differential Nonlinearity (DAC)

Nonideal DAC

A Lout

Increment at code 4
Lout(k)-Lout(k-1)

? T I | >
Cq C, C

Co 3 Cs4 Cs Cs Cs S(I N

Increment at code k is a signed quantity and will be negative if Xq(K)<Xoy(k-1)

DNL= max {DNL (k)|
1<k<N-1

DNL=0 for an ideal DAC



Differential Nonlinearity (ADC)

Nonideal ADC
A XouT
C; + 1—|
Co + Code width —_
for code C; :
CS T I
|
e | L
|
Cs 1 —_—
|
C2 T : I
Ci + —m—
| | N
Co | | i I — | >
X1 X2 X3 Xrs e q
Xrs Xy REF

DNL(k) is the code width for code k — ideal code width normalized to X g5

X - 1K -
DNL(k)= T(k+1gtLSTI: LSB




Differential Nonlinearity (ADC)

Nonideal ADC
A XouT
DNL (k)= L T(k+1)-LTK-LLSB
X sB
DNL= max {[DNL(k)|}
2<k<N-1

DNL=0 for an ideal ADC

Note: In some nonideal ADCs, two or more break points could cause transitions
to the same code C, making the definition of DNL ambiguous



Monotonicity in an ADC

Nonideal ADCs.

A Xout
A Xout C; +
“ 1 — Ce -+
|
Co + —
| Cs + —
Cs T | :
! Ci + -
Cs + }— :
¢, 4 — 7T - T
[ | [
02 . :_—I CQ T :
¢+ —— Ci + r—
| | XN : | N
Co xl .‘li .‘Ii %i i .‘Ii i | > Co f,[i | f)ji .‘,Ki xi f[i i 1 >
T1 T2 T3 T4 T6 5C B4 B5
sz xﬁ xREF B1 B2 B3 86187 -(LREF
Monotone ADC Nonmonotone ADC

Definition: An ADC is monotone if the
XOUT (Ly)= XOUT(SC m) Whenever X, >Z,

Note: Have used Xy, instead of Ly, since more than one transition point to a given
code

Note: Some authors do not define monotonicity in an ADC.



Missing Codes (ADC)

Nonideal ADCs ‘

TN

A XouT
¢ +
|
|
Co + —
|
Cs T —_
|
Ci + —
|
C3 T |_!
|
|
C. T :_—
i+ —
|
|
Co —— i i ——— I >
s r2 Ars Lrs Xre rer
Xrs Ty

No missing codes

c, |
co
c.
c.
c,
., -
c, |

Co

, XouT
B —
I _
! _
|
|
L |
|
|
|
B |
|
|
|
L —
: | I
| | i ] >
L1 o Xrs Xre Lrer
Xra X7

One missing code

Definition: An ADC has no missing codes if there are N-1 transition points and a
single LSB code increment occurs at each transition point. If these criteria are not
satisfied, we say the ADC has missing code(s).

Note: With this definition, all codes can be present but we still say it has
“missing codes”
Note: Some authors claim that missing codes in an ADC are the counterpart
to nonmonotonicity in a DAC. This association is questionable.



Cs
Ce
Cs
Cs
Cs
C,
C4

Co

Missing Codes (ADC)

Nonideal ADCs

A XouT
1 |
1 .
1 :
|
; 1 1 1 | -
| | | | | I -
X1 X2 Xr3 X4 Xrs q
REF

Missing codes

Cs
Ce
Cs
Ca4
Cs
C
Ci

Co

A XouT
1 —
1 L
1 !
| |
! o
:
|
1 P
|
|
i
I —
| | AN
f f f f F—— I >
X1 X2 Xz Xrs Fya A1 Q
REF

Xr7
Missing code with all codes present



Weird Things Can Happen

Nonideal ADCs

A XouT A Xout
C T — Cr + —
| |
Cs + — Ce }_!
|
i |
Cs - Cs T —
c, [ [ |
4 : C4 1 : |
c. L | |
’ —E Cs + —
C T :— i
| C, T j—
Ci + —m— |
! | In Cf + ———
Co i i — i — | > : N
Xg1 Xg2 s Xss XLse Lrer Co i i i i F—+— i >
X3 X X1 X2 X3 Frs s Are Q
Lrr REF

» Multiple outputs for given inputs
 All codes present but missing codes

Be careful on definition and measurement of linearity parameters to avoid
having weird behavior convolute analysis, simulation or measurements

Most authors (including manufacturers) are sloppy with their definitions of data
converter performance parameters and are not robust to some weird operation



Linearity Measurements (testing)

Consider ADC

Vin(t)

DUT

*

Xiout

Linearity testing often based upon code density testing

Code density testing:
A Vi(t)

Ramp or multiple ramps often used for excitation
Linearity of test signal is critical (typically 3 or 4 bits more linear than DUT)



Linearity Measurements (testing)

wwwww

Xiout
| Vin(t) DUT

A VRrer
XouT: AC

~

C; :number of counts in bin “i”

S
* First and last bins generally have many extra counts (and thus no useful information)
* Typically average 16 or 32 hits per code



Linearity Measurements (testing)

XouT: f:

Code density testing:

<
Ol

w6

= This measurement is widely used

= Does not keep track of order bins are filled

INL = max {‘]NLi‘} : Spme yveird things can occasionally happen
1<i<N-3 with this approach



Linearity Measurements (testing)

Code density testing: Xour. £

DNL = max {|DNL;}
1<i<N-2

INL = max {|INL;]}
1<i<N-3

Though INL and DNL for an ADC are rigorously defined, measuring the
actual transition points is not practical even if n is small so code density
tests are almost always used to “test” the INL and the DNL



Performance Characterization of Data Converters

« Static characteristics
— Resolution
— Least Significant Bit (LSB)
— Offset and Gain Errors
— Absolute Accuracy
— Relative Accuracy
— Integral Nonlinearity (INL)
— Differential Nonlinearity (DNL)
— Monotonicity (DAC)
— Missing Codes (ADC)
—> Low-f Spurious Free Dynamic Range (SFDR)
——> Low-f Total Harmonic Distortion (THD)
— Effective Number of Bits (ENOB)
— Power Dissipation



Linearity

A data converter (ADC or DAC) can be viewed as an amplifier that interfaces
between the analog and digital domains

Linearity is of considerable concern in amplifiers irrespective of whether the
/O is analog:analog, analog:digital, digital:analog, or digital:digital

Though INL and DNL give some information about linearity (the term “linearity”
is even included in their names!), much information about the actual linearity of
a data converter is suppressed in the INL and DNL metrics

The seemingly simple concept of linearity is challenging to accurately
characterize



Performance Characterization of Data Converters

« Static characteristics
— Resolution
— Least Significant Bit (LSB)
— Offset and Gain Errors
— Absolute Accuracy
— Relative Accuracy
— Integral Nonlinearity (INL)
— Differential Nonlinearity (DNL) Linearity
— Monotonicity (DAC) Metrics
— Missing Codes (ADC)

—> Low-f Spurious Free Dynamic Range (SFDR)

Spectral | ==> Low-f Total Harmonic Distortion (THD)
Characterization = — Effective Number of Bits (ENOB)

— Power Dissipation



Spectral Characterization



INL Often Not a Good Measure of Linearity

A Xout

Xrer T

Four identical INL with dramatically different linearity

A Xout

Xrer T

XIN

XIN




Linearity Issues

* INL is often not adequate for predicting the
linearity performance of a data converter

 Distortion (or lack thereof) is of major
concern in many applications

 Distortion is generally characterized in
terms of the harmonics that may appear in
a waveform when a periodic excitation is
applied at the input



Two Popular Methods of Linearity
Characterization

 Integral and Differential Nonlinearity (metrics: INL, DNL)

° Spectral Characterization (Based upon spectral harmonics of
sinusoidal signals metrics: THD, SFDR, SDR SNR)

‘Ak‘ A

ll!u---



Spectral Analysis

— ] —

If x(t) is periodic
X(t)=A, +) Asin(kwt+6,)
k=1

alternately

X(t) = +Za sm(kwt)+2b cos(kwt) ®= 2T—n

A \/ak+b2

Termed the Fourier Series Representation of x(t)

Metrics based upon Fourier Series Coefficients Useful for Characterizing how
nonlinear a system is !



Fourier Series Representation of Periodic
Continuous-Time Signals

x(t)=A, +3 A,sin(kwt+8, )
k=1

Fourier Series Coefficients Determined From:

1 t+T e ty+T .
A, ZE[E[ x(t)e ™ 'dt + £ x(t)e’ tdt]
or

A == x (t)sin(ktw)dt by =—— X (t)cos (ktw)dt

Integral is very time consuming, particularly if large number of components are required



Spectral Analysis

X|N(t) Nonlinear XOUT(t)

System (weakly)

A 4

Often the system of interest is ideally linear but practically it is weakly
nonlinear.

Often the input is nearly periodic and often sinusoidal and in latter case
desired output is also sinusoidal

Weak nonlinearity will cause harmonic distortion (often just termed
distortion) of signal as it is propagated through the system

Spectral analysis often used to characterize effects of the weak
nonlinearity

Spectral Performance Dependent upon Magnitude and Offset of Input



Spectral Analysis

XIN(t) Nonlinear XOUT(t)

" System (weakly) '

Distortion Types:
Frequency Distortion

Nonlinear Distortion (alt. harmonic distortion)

Frequency Distortion: Amplitude and phase of system is altered but
output is linearly related to input (i.e. system remains linear)

Nonlinear Distortion: Characteristic of System that is not linear, frequency
components usually appear in the output that are not present in the input

“Distortion” refers to two entirely different phenomenon

Spectral Analysis is the characterization of a system with a periodic input that
relates the Fourier series relationships between the input and output waveforms



Spectral Analysis

Xin(t) | Nonlinear XOUT(t)
| System '

If X, (t)=X_sin(cot+6)
Xopr(® = Ay + Y Asin(kot+0,)
k=1

All spectral performance metrics depend upon the sequences <Ak >::0 <l9k >k:1

Spectral performance metrics of interest. SNDR, SDR, THD, SFDR, IMOD

Alternately

Xour (1) = Ay + ;ak sin(kaot ) +;bk cos(kat) A = a2+ b 9, = tan"' (ﬂ]

a,



3.3 Fourier Representations
Jor Four Classes of Signals

s Signals
B and

Systems

Second Edition

Simon Haykin

Barry Van Veen

There are four distinct Fourier representations, each applicable to a different class of sig-
nals. The four classes are defined by the periodicity properties of a signal and whether the
signal is continuous or discrete in time. The Fourier series (FS) applies to continuous-time

lies to a signal that is continuous in time and nonperiodic.[The

periodic signals, and the[discrete-tume Fourier series (D IF5) ppplies to discrete-time peri-
IC_si peﬁo:lngm'h'hwﬁmmﬂurm'lt' 1 I presentation$. The Fourier

transform (FT) app

time Fourier transform (D pples to a signal that is discrete in time and nonperiodic.

Table 3.1 illustrates the relationship between the temporal properties of a signal and the
appropriate Fourier representation.

FS, FT, DTFS,DTFT



DFT (Discrete Fourier Transform) is a practical version of the DTFT, that is computed for a
finite-length discrete signal. The DFT becomes equal to the DTFT as the length of the
sample becomes infinite and the DTFT converges to the continuous Fourier transform in the
limit of the sampling frequency going to infinity. oci 27,2014

The DFT is the most important discrete transform,
used to perform Fourier analysis in many practical
applications.[1] In digital signal processing, the

DFS. DTFT, and DFT

1
Herein we describe the relationship between the Discrete Fourier Series (DFS), Discrete Time
Fourier Transform (DTFT), and the Discrete Fourier Transform (DFT). Why? The real reason
is that the DFT 1s easily implemented on a computer and is part of every mathematics package,
so 1t would be nice to know how to determine or approximate the DFT and DTFT on a computer.

Fast Fourier transform - Wikipedia

A fast Fourier transform (FFT) is an algorithm that computes the discrete Fourier transform
(DFT) of a sequence, or its inverse (IDFT). Fourier analysis converts a signal from its original
domain (often time or space) to a representation in the frequency domain and vice versa.

DFT,DFS,FFT,IDFT



The “Fourier” Representations:

FS, FT, DTFS,DTFT

DFT, DFS, FFT, IC

FT

“applies” “algorithm” “perform” “computes”

“converts” “computed for”

Really fundamental concepts but varying notation and maybe
varying perceptions



Spectral Characterization

Assume x(t) is periodic with period T (T=1/f) and band-limited

X(t) is uniformly sampled N times with sampling interval Tg NT=T
M
time domain x(t)=) Acsin(kot+6,)  2M parameters
i=1 (Ay 6,

X =< x(Ts ), x(2T5 ),... x(NT5) >

IDFT

DFT

—

frequency domain X =< X, X,yy5, Xy, > 2N parameters

(X, are complex)

« Sampling interval not restricted to a single period

- Under certain conditions, x(t) is uniquely represented byX (k)

X(t)=IDFT (DFT(x(t)))



Spectral Characterization

Will focus on how Fourier Series Representation of a periodic signal is altered
when it passes through a weakly nonlinear system

Relationship between DFT and continuous-time Fourier Series representation
is fundamental to characterizing spectral performance of a weakly nonlinear
system



Distortion Analysis

N Xor) =A,+ Y Asin(kot+6,)
k=1

| <A K >E:0

N

1 2 3 4 5 6
« Often termed the DFT coefficients (will show later)
« Spectral lines, not a continuous function

A, is termed the fundamental
A, is termed the kth harmonic



Distortion Analysis

|Ak| . <A k >E:0

Often ideal response will have only fundamental present and all
remaining spectral terms will vanish



Distortion Analysis

a) 4

For a low distortion signal, the 2"d and higher harmonics are generally
much smaller than the fundamental

The magnitude of the harmonics generally decrease rapidly with k for low
distortion signals



Distortion Analysis

a) 4

T ] T T T s '’ ® -

| 1 2 3 4 ) 6 K

Assume x(t) is periodic with period T :;

X(t) is band-limited to frequency 21 f ky if A#0 and A,=0 for all k>k,

where <Ak >: , are the Fourier series coefficients of f(t)



Distortion Analysis

Total Harmonic Distortion, THD

THD — RMS voltage m harmonics

RMS voltage of fundamenta 1




Distortion Analysis

Spurious Free Dynamic Range, SFDR

The SFDR is the difference between the fundamental and the largest harmonic

A 4
' %
SFDR
'
T l T T Y O O |
| 1 2 3 4 5 6 K

SFDR is usually determined by either the second or third harmonic



Distortion Analysis

In a fully differential symmetric circuit, all even harmonics are
absent in the differential output !

a) 4




Distortion Analysis

Theorem: In a fully differential symmetric circuit, all even-order terms
are absent in the Taylor’s series output for symmetric differential

excitations !
+ VO1 +
V|D ““““““““““““ VOD
, Vo, -
Proof: Expanding in a Taylor’s series around V,;=0, we obtain
0 ‘ Voo =Vo1 — Vo, = th Z 'VlD
\7 =x(V|D)=th (\/ID) 0 0

D Ve[ <Vmﬂ
Voo =x(Vo) =20 (Ve >h[ (Vo) =(-1)' (Vo)

When k is even, term in [ ] vanishes



Distortion Analysis

Theorem: In a fully differential symmetric circuit, all even harmonics are
absent in the differential output for symmetric differential excitations !

+ Vo s
Vo = e Vob
Proof: : Vg,
Recall: 21
> h, sin((n —2k)x) for nodd
k=0
sin” (x) =1
E
Zzlgk sin((n—-2k)x+6,)  forneven
k=0

where h,, g,, and 8, are constants

That is, odd powers of sin"(x) have only odd harmonics present
and even powers have only even harmonics present
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Stay Safe and Stay Healthy !







